top of page

​ORIGINAL PAPER

1. Nishijima H, Sugita M, Umezawa N, et al. Development of organ-specific autoimmunity by dysregulated Aire expression.
Immunol Cell Biol. 2022. Mar 21. doi: 10.1111/imcb.12546. Online ahead of print.

 

2. Morimoto J, Matsumoto M, Miyazawa R, et al. No major impact of two homologous proteins Ly6C1 and Ly6C2 on immune homeostasis.
Immunohorizons. 6: 202-210, 2022.

 

3. Morimoto J, Matsumoto M, Miyazawa R, et al. Aire suppresses CTLA-4 expression from the thymic stroma to control autoimmunity.
Cell Rep. 38 110384, 2022.

 

4. Nishijima H, Matsumoto M, Morimoto J, et al. Aire controls heterogeneity of medullary thymic epithelial cells for the expression of self-antigens.
J Immunol. 208: 303-320, 2022.

 

5. Matsumoto M, Tsuneyama K, Morimoto J, et al. Tissue-specific autoimmunity controlled by Aire in thymic and peripheral tolerance mechanism.

Int. Immunol. 32: 117-131, 2020.

6. Morimoto J, Nishikawa Y, Kakimoto T, et al. Aire controls in trans the production of medullary thymic epithelial cells expressing Ly-6C/Ly-6G. 

J. Immunol. 201: 3244-3257, 2018.

7. Nishijima H, Kajimoto T, Matsuoka Y, et al. Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). 

J. Autoimmun. 86: 75-92, 2018.

8. Mouri Y, Ueda Y, Yamano T, et al. Mode of tolerance induction and requirement for Aire are governed by the cell types that express self-antigen and those that present antigen.

J. Immunol. 199: 3959-3971, 2017.

9. Kawano H, Nishijima H, Morimoto J, et al. Aire expression is inherent to most medullary thymic epithelial cells during their differentiation program. 
J. Immunol. 195: 5149-5158, 2015.

10. Nishijima H, Kitano S, Miyachi H, et al. Ectopic Aire expression in the thymic cortex reveals inherent properties of Aire as a tolerogenic factor within the medulla. 
J. Immunol. 195: 4641-4649, 2015. 

11. Mouri Y, Nishijima H, Kawano H, et al. NIK in thymic stroma establishes central tolerance by orchestrating cross-talk with not only thymocytes but also dendritic cells. 

J. Immunol. 193: 4356-4367, 2014.

12. Nishikawa Y, Nishijima H, Matsumoto M, et al. Temporal lineage tracing of Aire-expressing cells reveals a requirement for Aire in their maturation program. 
J. Immunol. 192: 2585-2592, 2014.

13. Mouri Y, Yano M, Shinzawa M, et al. Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. 
J. Immunol. 186: 5047-5057, 2011.

14. Nishikawa Y, Hirota F, Yano M, et al. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. 
J. Exp. Med. 207: 963-971, 2010.

15. Matsumoto M. The role of autoimmune regulator (Aire) in the development of the immune system (Review). 

Microbes Infect. 11: 928-934, 2009.

 

16. Yano M, Kuroda N, Han H, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. 
J. Exp. Med. 205: 2827-2838, 2008.

17. Matsumoto M, Zhou Y, Matsuo S, et al. Targeted deletion of the murine corneodesmosin gene delineates its essential role in skin and hair physiology. 
Proc. Natl. Acad. Sci. USA 105: 6720-6724, 2008.

18. Niki S, Oshikawa K, Mouri Y, et al. Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. 

J. Clin. Invest. 116: 1292-1301, 2006.

19. Kinoshita D, Hirota F, Kaisho T, et al. Essential role of IκB kinase α in thymic organogenesis required for the establishment of self-tolerance. 
J. Immunol. 176: 3995-4002, 2006.

20. Kuroda N, Mitani T, Takeda N, et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice.

J. Immunol. 174: 1862-1870, 2005.

21. Akiyoshi H, Hatakeyama S, Pitkanen J, et al. Subcellular expression of autoimmune regulator is organized in a spatiotemporal manner. 
J. Biol. Chem. 279: 33984-33991, 2004.

22. Kajiura F, Sun S, Nomura T, et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma dependent manner. 

J. Immunol. 172:2067-2075, 2004.

23. Uchida D, Hatakeyama S, Matsushima A, et al. AIRE functions as an E3 ubiquitin ligase.

J. Exp. Med. 199:167-172, 2004.

24. Matsumoto M, Yamada T, Yoshinaga SK, et al. Essential role of NF-κB-inducing kinase in T cell activation through the TCR/CD3 pathway. 
J. Immunol. 169:1151-1158, 2002.

25. Matsushima A, Kaisho T, Rennert PD, et al. Essential role of NF-κB-inducing kinase and IκB-kinase α in NF-κB activation through lymphotoxin-β receptor, but not though TNF receptor-I. 

J. Exp. Med. 193:631-636, 2001.

26. Yamada T, Mitani T, Yorita K, et al. Abnormal immune function of homopoietic cells from alymphoplasia (aly) mice, natural strain with mutant NF-κB-inducing kinase. 
J. Immunol. 165:804-812, 2000.

27. Matsumoto M, Iwamasa K, Rennert PD, et al. Involvement of distinct cellular compartments in the abnormal lymphoid organogenesis in lymphotoxin-α-deficient mice and alymphoplasia (aly) mice defined by the chimeric analysis. 
J. Immunol. 163:1584-1591, 1999.

28. Matsumoto M, Fu Y-X, Molina H, et al. Distinct roles of lymphotoxin-α and the type I TNF receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells.

J. Exp. Med. 186: 1997-2004, 1997.

29. Matsumoto M, Fukuda W, Circolo A, et al. Abrogation of the alternative complement pathway by targeted deletion of murine factor B. 
Proc. Natl. Acad. Sci. USA 94: 8720-8725, 1997.

30. Matsumoto M, Lo SF, Carruthers CJL, et al. Affinity maturation without germinal centres in lymphotoxin-α-deficient mice. 

Nature 382: 462-466, 1996.

31. Matsumoto M, Mariathasan S, Nahm MH, et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. 

Science 271: 1289-1291, 1996.

bottom of page