top of page

​ORIGINAL PAPER

1. Miyazawa R, Nagao J, Arita-Morioka K, et al. Dispensable role of Aire in CD11c+ conventional dendritic cells for antigen presentation and shaping the transcriptome.

Immunohorizons 7: 140-158, 2023. Cover image

 

2. Nishijima H, Sugita M, Umezawa N, et al. Development of organ-specific autoimmunity by dysregulated Aire expression.
Immunol. Cell Biol. 100: 371-377, 2022.

 

3. Morimoto J, Matsumoto M, Miyazawa R, et al. No major impact of two homologous proteins Ly6C1 and Ly6C2 on immune homeostasis.
Immunohorizons 6: 202-210, 2022.

 

4. Morimoto J, Matsumoto M, Miyazawa R, et al. Aire suppresses CTLA-4 expression from the thymic stroma to control autoimmunity.
Cell Rep. 38: 110384, 2022.

 

5. Nishijima H, Matsumoto M, Morimoto J, et al. Aire controls heterogeneity of medullary thymic epithelial cells for the expression of self-antigens.
J. Immunol. 208: 303-320, 2022.

 

6. Matsumoto M, Tsuneyama K, Morimoto J, et al. Tissue-specific autoimmunity controlled by Aire in thymic and peripheral tolerance mechanism.

Int. Immunol. 32: 117-131, 2020.

7. Morimoto J, Nishikawa Y, Kakimoto T, et al. Aire controls in trans the production of medullary thymic epithelial cells expressing Ly-6C/Ly-6G. 

J. Immunol. 201: 3244-3257, 2018.

8. Nishijima H, Kajimoto T, Matsuoka Y, et al. Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). 

J. Autoimmun. 86: 75-92, 2018.

9. Mouri Y, Ueda Y, Yamano T, et al. Mode of tolerance induction and requirement for Aire are governed by the cell types that express self-antigen and those that present antigen.

J. Immunol. 199: 3959-3971, 2017.

10. Kawano H, Nishijima H, Morimoto J, et al. Aire expression is inherent to most medullary thymic epithelial cells during their differentiation program. 
J. Immunol. 195: 5149-5158, 2015.

11. Nishijima H, Kitano S, Miyachi H, et al. Ectopic Aire expression in the thymic cortex reveals inherent properties of Aire as a tolerogenic factor within the medulla. 
J. Immunol. 195: 4641-4649, 2015. 

12. Mouri Y, Nishijima H, Kawano H, et al. NIK in thymic stroma establishes central tolerance by orchestrating cross-talk with not only thymocytes but also dendritic cells. 

J. Immunol. 193: 4356-4367, 2014.

13. Nishikawa Y, Nishijima H, Matsumoto M, et al. Temporal lineage tracing of Aire-expressing cells reveals a requirement for Aire in their maturation program. 
J. Immunol. 192: 2585-2592, 2014.

14. Mouri Y, Yano M, Shinzawa M, et al. Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. 
J. Immunol. 186: 5047-5057, 2011.

15. Nishikawa Y, Hirota F, Yano M, et al. Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. 
J. Exp. Med. 207: 963-971, 2010.

16. Matsumoto M. The role of autoimmune regulator (Aire) in the development of the immune system (Review). 

Microbes Infect. 11: 928-934, 2009.

 

17. Yano M, Kuroda N, Han H, et al. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. 
J. Exp. Med. 205: 2827-2838, 2008.

18. Matsumoto M, Zhou Y, Matsuo S, et al. Targeted deletion of the murine corneodesmosin gene delineates its essential role in skin and hair physiology. 
Proc. Natl. Acad. Sci. USA 105: 6720-6724, 2008.

19. Niki S, Oshikawa K, Mouri Y, et al. Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. 

J. Clin. Invest. 116: 1292-1301, 2006.

20. Kinoshita D, Hirota F, Kaisho T, et al. Essential role of IκB kinase α in thymic organogenesis required for the establishment of self-tolerance. 
J. Immunol. 176: 3995-4002, 2006.

21. Kuroda N, Mitani T, Takeda N, et al. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice.

J. Immunol. 174: 1862-1870, 2005.

22. Akiyoshi H, Hatakeyama S, Pitkanen J, et al. Subcellular expression of autoimmune regulator is organized in a spatiotemporal manner. 
J. Biol. Chem. 279: 33984-33991, 2004.

23. Kajiura F, Sun S, Nomura T, et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma dependent manner. 

J. Immunol. 172:2067-2075, 2004.

24. Uchida D, Hatakeyama S, Matsushima A, et al. AIRE functions as an E3 ubiquitin ligase.

J. Exp. Med. 199:167-172, 2004.

25. Matsumoto M, Yamada T, Yoshinaga SK, et al. Essential role of NF-κB-inducing kinase in T cell activation through the TCR/CD3 pathway. 
J. Immunol. 169:1151-1158, 2002.

26. Matsushima A, Kaisho T, Rennert PD, et al. Essential role of NF-κB-inducing kinase and IκB-kinase α in NF-κB activation through lymphotoxin-β receptor, but not though TNF receptor-I. 

J. Exp. Med. 193:631-636, 2001. Cover image

27. Yamada T, Mitani T, Yorita K, et al. Abnormal immune function of homopoietic cells from alymphoplasia (aly) mice, natural strain with mutant NF-κB-inducing kinase. 
J. Immunol. 165:804-812, 2000.

28. Matsumoto M, Iwamasa K, Rennert PD, et al. Involvement of distinct cellular compartments in the abnormal lymphoid organogenesis in lymphotoxin-α-deficient mice and alymphoplasia (aly) mice defined by the chimeric analysis. 
J. Immunol. 163:1584-1591, 1999.

29. Matsumoto M, Fu Y-X, Molina H, et al. Distinct roles of lymphotoxin-α and the type I TNF receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells.

J. Exp. Med. 186: 1997-2004, 1997.

30. Matsumoto M, Fukuda W, Circolo A, et al. Abrogation of the alternative complement pathway by targeted deletion of murine factor B. 
Proc. Natl. Acad. Sci. USA 94: 8720-8725, 1997.

31. Matsumoto M, Lo SF, Carruthers CJL, et al. Affinity maturation without germinal centres in lymphotoxin-α-deficient mice. 

Nature 382: 462-466, 1996.

32. Matsumoto M, Mariathasan S, Nahm MH, et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. 

Science 271: 1289-1291, 1996.

bottom of page